Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2008 Mar;190(5):1710-7. Epub 2007 Dec 21.

Altered utilization of N-acetyl-D-galactosamine by Escherichia coli O157:H7 from the 2006 spinach outbreak.

Author information

  • 1Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland 20708, USA.


In silico analyses of previously sequenced strains of Escherichia coli O157:H7, EDL933 and Sakai, localized the gene cluster for the utilization of N-acetyl-D-galactosamine (Aga) and D-galactosamine (Gam). This gene cluster encodes the Aga phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and other catabolic enzymes responsible for transport and catabolism of Aga. As the complete coding sequences for enzyme IIA (EIIA)(Aga/Gam), EIIB(Aga), EIIC(Aga), and EIID(Aga) of the Aga PTS are present, E. coli O157:H7 strains normally are able to utilize Aga as a sole carbon source. The Gam PTS complex, in contrast, lacks EIIC(Gam), and consequently, E. coli O157:H7 strains cannot utilize Gam. Phenotypic analyses of 120 independent isolates of E. coli O157:H7 from our culture collection revealed that the overwhelming majority (118/120) displayed the expected Aga+ Gam- phenotype. Yet, when 194 individual isolates, derived from a 2006 spinach-associated E. coli O157:H7 outbreak, were analyzed, all (194/194) displayed an Aga- Gam- phenotype. Comparison of aga/gam sequences from two spinach isolates with those of EDL933 and Sakai revealed a single nucleotide change (G:C-->A:T) in the agaF gene in the spinach-associated isolates. The base substitution in agaF, which encodes EIIA(Aga/Gam) of the PTS, changes a conserved glycine residue to serine (Gly91Ser). Pyrosequencing of this region showed that all spinach-associated E. coli O157:H7 isolates harbored this same G:C-->A:T substitution. Notably, when agaF+ was cloned into an expression vector and transformed into six spinach isolates, all (6/6) were able to grow on Aga, thus demonstrating that the Gly91Ser substitution underlies the Aga- phenotype in these isolates.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center