Format

Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2008 Mar 15;111(6):3249-56. Epub 2007 Dec 20.

Galactosylation does not prevent the rapid clearance of long-term, 4 degrees C-stored platelets.

Author information

1
ZymeQuest, Beverly, MA, USA.

Abstract

Cold storage of platelets for transfusion is desirable to extend platelet storage times and to prevent bacterial growth. However, the rapid clearance of cold-stored platelets prevents their use. A novel method for preventing the rapid clearance of cold-stored platelets has previously been developed in a murine model. Cold storage induces the clustering and recognition of exposed beta-N-acetylglucosamine (betaGlcNAc) on platelet surfaces. Glycosylation of betaGlcNAc residues with uridine 5'-diphosphogalactose (UDP-galactose) results in the normal survival of short-term (2 h) 0 degrees C-stored murine platelets. Based on this finding, we developed a similar glycosylation process by adding UDP-galactose to human apheresis platelets. A phase 1 clinical trial was conducted transfusing radiolabeled autologous apheresis platelets stored for 48 hours at 4 degrees C with or without pretreatment with UDP-galactose. In contrast to the murine study, galactosylation of human platelets did not prevent the accelerated platelet clearance routinely observed after 4 degrees C storage. We next developed a murine model of platelet storage for 48 hours at 4 degrees C and showed that UDP-galactose treatment of murine platelets also did not prevent their rapid clearance, in agreement with the human platelet study. We conclude that different mechanisms of clearance may exist for short- and long-term cold-stored platelets.

PMID:
18096766
DOI:
10.1182/blood-2007-06-097295
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center