Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2008 Mar 15;111(6):3249-56. Epub 2007 Dec 20.

Galactosylation does not prevent the rapid clearance of long-term, 4 degrees C-stored platelets.

Author information

ZymeQuest, Beverly, MA, USA.


Cold storage of platelets for transfusion is desirable to extend platelet storage times and to prevent bacterial growth. However, the rapid clearance of cold-stored platelets prevents their use. A novel method for preventing the rapid clearance of cold-stored platelets has previously been developed in a murine model. Cold storage induces the clustering and recognition of exposed beta-N-acetylglucosamine (betaGlcNAc) on platelet surfaces. Glycosylation of betaGlcNAc residues with uridine 5'-diphosphogalactose (UDP-galactose) results in the normal survival of short-term (2 h) 0 degrees C-stored murine platelets. Based on this finding, we developed a similar glycosylation process by adding UDP-galactose to human apheresis platelets. A phase 1 clinical trial was conducted transfusing radiolabeled autologous apheresis platelets stored for 48 hours at 4 degrees C with or without pretreatment with UDP-galactose. In contrast to the murine study, galactosylation of human platelets did not prevent the accelerated platelet clearance routinely observed after 4 degrees C storage. We next developed a murine model of platelet storage for 48 hours at 4 degrees C and showed that UDP-galactose treatment of murine platelets also did not prevent their rapid clearance, in agreement with the human platelet study. We conclude that different mechanisms of clearance may exist for short- and long-term cold-stored platelets.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center