Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Pharmacol. 2008 Feb 26;581(1-2):77-85. Epub 2007 Nov 28.

Role of nociceptin/orphanin FQ and the pseudopeptide [Phe1Psi(CH2NH)Gly2]-nociceptin(1-13)-NH2 and their interaction with classic opioids in the modulation of thermonociception in the land snail Helix aspersa.

Author information

1
Laboratorio de Histología y Microscopía Electrónica, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan. México D.F., C.P. 14370, México.

Abstract

The role in nociception of nociceptin/orphanin FQ (N/OFQ) and its receptor, the opioid receptor-like 1 (NOP), remains unclear because this peptide has been implicated in both suppression and enhancement of nociception. The present work characterises the effects of N/OFQ and the NOP receptor antagonist, the pseudopeptide [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) (Phe(1)Psi), on thermonociception in the snail Helix aspersa using the hot plate assay. Additionally, the possible interaction of each of these compounds with morphine or dynorphin A(1-17) and naloxone was studied. Compounds were administered into the hemocoel cavity of H. aspersa and the latency to the aversive withdrawal behaviour recorded. Dose-response and time course curves were done. N/OFQ and naloxone produced a similar dose-dependent pronociceptive effect; however, N/OFQ reached its peak effect earlier and was 30 times more potent than naloxone. [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) and the opioid agonists, morphine and dynorphin A(1-17) produced antinociception with a similar efficacy, but [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) reached its peak effect more rapidly and lasted longer than that of dynorphin A(1-17) and morphine. [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) was 50 times less potent than dynorphin A(1-17), but 30 times more potent than morphine. N/OFQ significantly reduced morphine and dynorphin A(1-17)-induced antinociception. Combined administration of low doses of [Phe(1)Psi(CH(2)NH)Gly(2)]-nociceptin(1-13)-NH(2) and morphine or dynorphin A(1-17) produced a potent antinociceptive effect. Sub-effective doses of naloxone and N/OFQ also synergised to produce pronociception. Data suggest that these two opioid classes regulate nociception through parallel systems. The H. aspersa model appears as a valuable experimental preparation to continue the study of these opioid receptor systems.

PMID:
18096155
DOI:
10.1016/j.ejphar.2007.11.039
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center