Format

Send to

Choose Destination
See comment in PubMed Commons below
Differentiation. 2008 May;76(5):531-45. Epub 2007 Dec 17.

Identification of genes differentially expressed by prematurely fused human sutures using a novel in vivo - in vitro approach.

Author information

1
Cooperative Research Centre for Diagnostics, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia. anna.coussens@gmail.com

Abstract

Craniosynostosis is the premature fusion of calvarial sutures. It results from abnormal differentiation or proliferation of cells within the osteogenic fronts of growing calvarial bones. To date, research has focused on animal models and in vitro organ and tissue culture to determine the molecular mechanisms controlling calvarial suture morphogenesis. Here, we test a new, in vivo-in vitro approach based on the hypothesis that calvarial suture cells passaged in minimal medium exhibit a stable gene expression profile similar to undifferentiated osteoblastic cells that can provide a benchmark for comparison with in vivo expression of differentiated tissue. We show that tissue-specific expression is lost after the first passage and, using cDNA microarrays, compare expression between fused suture tissue from craniosynostosis patients and in vitro de-differentiated explant cells. A large number of differentially expressed genes were identified, including novel genes WIF1, LEF1, SATB2, RARRES1, DEFA1, DMP1, PTPRZ1, and PTPRC, as well as those commonly associated with human suture morphogenesis, e.g., FGF2, MSX2, and BMP2. Two differentially expressed genes, WIF1 and FGF2, were further examined in an in vivo-in vivo comparison between unfused and prematurely fused tissue. The same pattern of differential expression was observed in each case, further validating the ability of our in vivo-in vitro approach to identify genes involved in in vivo human calvarial tissue differentiation.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center