Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H954-60. Epub 2007 Dec 14.

Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation.

Author information

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.


Inhibition of myocardial fatty acid oxidation can improve left ventricular (LV) mechanical efficiency by increasing LV power for a given rate of myocardial energy expenditure. This phenomenon has not been assessed at high workloads in nonischemic myocardium; therefore, we subjected in vivo pig hearts to a high workload for 5 min and assessed whether blocking mitochondrial fatty acid oxidation with the carnitine palmitoyltransferase-I inhibitor oxfenicine would improve LV mechanical efficiency. In addition, the cardiac content of malonyl-CoA (an endogenous inhibitor of carnitine palmitoyltransferase-I) and activity of acetyl-CoA carboxylase (which synthesizes malonyl-CoA) were assessed. Increased workload was induced by aortic constriction and dobutamine infusion, and LV efficiency was calculated from the LV pressure-volume loop and LV energy expenditure. In untreated pigs, the increase in LV power resulted in a 2.5-fold increase in fatty acid oxidation and cardiac malonyl-CoA content but did not affect the activation state of acetyl-CoA carboxylase. The activation state of the acetyl-CoA carboxylase inhibitory kinase AMP-activated protein kinase decreased by 40% with increased cardiac workload. Pretreatment with oxfenicine inhibited fatty acid oxidation by 75% and had no effect on cardiac energy expenditure but significantly increased LV power and LV efficiency (37 +/- 5% vs. 26 +/- 5%, P < 0.05) at high workload. In conclusion, 1) myocardial fatty acid oxidation increases with a short-term increase in cardiac workload, despite an increase in malonyl-CoA concentration, and 2) inhibition of fatty acid oxidation improves LV mechanical efficiency by increasing LV power without affecting cardiac energy expenditure.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center