Send to

Choose Destination
See comment in PubMed Commons below
Trends Cell Biol. 2008 Jan;18(1):28-37.

Intermediate filament assembly: dynamics to disease.

Author information

Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago IL 60611, USA.


Intermediate filament (IF) proteins belong to a large and diverse gene family with broad representation in vertebrate tissues. Although considered the 'toughest' cytoskeletal fibers, studies in cultured cells have revealed that IF can be surprisingly dynamic and highly regulated. This review examines the diversity of IF assembly behaviors, and considers the ideas that IF proteins are co- or post-translationally assembled into oligomeric precursors, which can be delivered to different subcellular compartments by microtubules or actomyosin and associated motor proteins. Their interaction with other cellular elements via IF associated proteins (IFAPs) affects IF dynamics and also results in cellular networks with properties that transcend those of individual components. We end by discussing how mutations leading to defects in IF assembly, network formation or IF-IFAP association compromise in vivo functions of IF as protectors against environmental stress.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center