Format

Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 2008 Jan 24;151(2):410-8. Epub 2007 Nov 4.

The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis.

Author information

1
Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA.

Abstract

Slack (Slo 2.2), a member of the Slo potassium channel family, is activated by both voltage and cytosolic factors, such as Na(+) ([Na(+)](i)) and Cl(-) ([Cl(-)](i)). Since the Slo family is known to play a role in hypoxia, and since hypoxia/ischemia is associated with an increase in H(+) and CO(2) intracellularly, we hypothesized that the Slack channel may be affected by changes in intracellular concentrations of CO(2) and H(+). To examine this, we expressed the Slack channel in Xenopus oocytes and the Slo 2.2 protein was allowed to be inserted into the plasma membrane. Inside-out patch recordings were performed to examine the response of Slack to different CO(2) concentrations (0.038%, 5%, 12%) and to different pH levels (6.3, 6.8, 7.3, 7.8, 8.3). In the presence of low [Na(+)](i) (5 mM), the Slack channel open probability decreased when exposed to decreased pH or increased CO(2) in a dose-dependent fashion (from 0.28+/-0.03, n=3, at pH 7.3 to 0.006+/-0.005, n=3, P=0.0004, at pH 6.8; and from 0.65+/-0.17, n=3, at 0.038% CO(2) to 0.22+/-0.07, n=3, P=0.04 at 12% CO(2)). In the presence of high [Na(+)](i) (45 mM), Slack open probability increased (from 0.03+/-0.01 at 5 mM [Na(+)](i), n=3, to 0.11+/-0.01, n=3, P=0.01) even in the presence of decreased pH (6.3). Since Slack activity increases significantly when exposed to increased [Na(+)](i), even in presence of increased H(+), we propose that Slack may play an important role in pathological conditions during which there is an increase in the intracellular concentrations of both acid and Na(+), such as in ischemia/hypoxia.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center