Maximal exercise test is a useful method for physical capacity and oxygen consumption determination in streptozotocin-diabetic rats

Cardiovasc Diabetol. 2007 Dec 13:6:38. doi: 10.1186/1475-2840-6-38.

Abstract

Background: The aim of the present study was to investigate the relationship between speed during maximum exercise test (ET) and oxygen consumption (VO2) in control and STZ-diabetic rats, in order to provide a useful method to determine exercise capacity and prescription in researches involving STZ-diabetic rats.

Methods: Male Wistar rats were divided into two groups: control (CG, n = 10) and diabetic (DG, n = 8). The animals were submitted to ET on treadmill with simultaneous gas analysis through open respirometry system. ET and VO2 were assessed 60 days after diabetes induction (STZ, 50 mg/Kg).

Results: VO2 maximum was reduced in STZ-diabetic rats (72.5 +/- 1 mL/Kg/min-1) compared to CG rats (81.1 +/- 1 mL/Kg/min-1). There were positive correlations between ET speed and VO2 (r = 0.87 for CG and r = 0.8 for DG), as well as between ET speed and VO2 reserve (r = 0.77 for CG and r = 0.7 for DG). Positive correlations were also obtained between measured VO2 and VO2 predicted values (r = 0.81 for CG and r = 0.75 for DG) by linear regression equations to CG (VO2 = 1.54 * ET speed + 52.34) and DG (VO2 = 1.16 * ET speed + 51.99). Moreover, we observed that 60% of ET speed corresponded to 72 and 75% of VO2 reserve for CG and DG, respectively. The maximum ET speed was also correlated with VO2 maximum for both groups (CG: r = 0.7 and DG: r = 0.7).

Conclusion: These results suggest that: a) VO2 and VO2 reserve can be estimated using linear regression equations obtained from correlations with ET speed for each studied group; b) exercise training can be prescribed based on ET in control and diabetic-STZ rats; c) physical capacity can be determined by ET. Therefore, ET, which involves a relatively simple methodology and low cost, can be used as an indicator of cardio-respiratory capacity in future studies that investigate the physiological effect of acute or chronic exercise in control and STZ-diabetic male rats.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental / physiopathology*
  • Male
  • Oxygen Consumption*
  • Physical Conditioning, Animal*
  • Physical Fitness*
  • Rats
  • Rats, Wistar
  • Regression Analysis
  • Reproducibility of Results