Send to

Choose Destination
Am J Physiol Cell Physiol. 2008 Feb;294(2):C591-603. Epub 2007 Dec 12.

Antibody-independent localization of the electroneutral Na+-HCO3- cotransporter NBCn1 (slc4a7) in mice.

Author information

The Water and Salt Research Center, University of Aarhus, Ole Worms Allé 1160, DK-8000 Aarhus C, Denmark.


The expression pattern of the electroneutral Na(+)-HCO(3)(-)cotransporter NBCn1 (slc4a7) was investigated by beta-galactosidase staining of mice with a LacZ insertion into the NBCn1 gene. This method is of particular value because it is independent of immunoreactivity. We find that the NBCn1 promoter is active in a number of tissues where NBCn1 has previously been functionally or immunohistochemically identified, including a broad range of blood vessels (vascular smooth muscle cells and endothelial cells), kidney thick ascending limb and medullary collecting duct epithelial cells, the epithelial lining of the kidney pelvis, duodenal enterocytes, choroid plexus epithelial cells, hippocampus, and retina. Kidney corpuscles, colonic mucosa, and nonvascular smooth muscle cells (from the urinary bladder, trachea, gastrointestinal wall, and uterus) were novel areas of promoter activity. Atrial but not ventricular cardiomyocytes were stained. In the brain, distinct layers of the cerebral cortex and cerebellar Purkinje cells were stained as was the dentate nucleus. No staining of skeletal muscle or cortical collecting ducts was observed. RT-PCR analyses confirmed the expression of NBCn1 and beta-galactosidase in selected tissues. Disruption of the NBCn1 gene resulted in reduced NBCn1 expression, and in bladder smooth muscle cells, reduced amiloride-insensitive Na(+)-dependent HCO(3)(-) influx was observed. Furthermore, disruption of the NBCn1 gene resulted in a lower intracellular steady-state pH of bladder smooth muscle cells in the presence of CO(2)/HCO(3)(-) but not in its nominal absence. We conclude that NBCn1 has a broad expression profile, supporting previous findings based on immunoreactivity, and suggest several new tissues where NBCn1 may be important.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center