Format

Send to

Choose Destination
J Med Chem. 2008 Jan 10;51(1):68-76. Epub 2007 Dec 12.

Design, synthesis, and biological evaluation of classical and nonclassical 2-amino-4-oxo-5-substituted-6-methylpyrrolo[3,2-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors.

Author information

1
Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, USA. gangjee@duq.edu

Abstract

We designed and synthesized a classical antifolate N-{4-[(2-amino-6-methyl-4-oxo-3,4-dihydro-5 H-pyrrolo[3,2- d]pyrimidin-5-yl)methyl]benzoyl}- l-glutamic acid 4 and 11 nonclassical analogues 5- 15 as potential dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. The key intermediate in the synthesis was N-(4-chloro-6-methyl-5 H-pyrrolo[3,2- d]pyrimidin-2-yl)-2,2-dimethylpropanamide, 29, to which various 5-benzyl substituents were attached. For the classical analogue 4, the ester obtained from the N-benzylation reaction was deprotected and coupled with diethyl l-glutamate followed by saponification. Compound 4 was a potent dual inhibitor of human TS (IC 50 = 46 nM, about 206-fold more potent than pemetrexed) and DHFR (IC 50 = 120 nM, about 55-fold more potent than pemetrexed). The nonclassical analogues were marginal inhibitors of human TS, but four analogues showed potent T. gondii DHFR inhibition along with >100-fold selectivity compared to human DHFR.

PMID:
18072727
PMCID:
PMC3885252
DOI:
10.1021/jm701052u
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for American Chemical Society Icon for PubMed Central
Loading ...
Support Center