Format

Send to

Choose Destination
Mol Microbiol. 2008 Feb;67(4):703-18. Epub 2007 Dec 7.

Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features.

Author information

1
Department of Biochemistry and Centre of Excellence for Coherent X-ray Science, La Troube University, Melbourne, Victoria 3086, Australia.

Abstract

During intraerythrocytic development, the human malaria parasite, Plasmodium falciparum, establishes membrane-bound compartments, known as Maurer's clefts, outside the confines of its own plasma membrane. The Maurer's compartments are thought to be a crucial component of the machinery for protein sorting and trafficking; however, their ultrastructure is only partly defined. We have used electron tomography to image Maurer's clefts of 3D7 strain parasites. The compartments are revealed as flattened structures with a translucent lumen and a more electron-dense coat. They display a complex and convoluted morphology, and some regions are modified with surface nodules, each with a circular cross-section of approximately 25 nm. Individual 25 nm vesicle-like structures are also seen in the erythrocyte cytoplasm and associated with the red blood cell membrane. The Maurer's clefts are connected to the red blood cell membrane by regions with extended stalk-like profiles. Immunogold labelling with specific antibodies confirms differential labelling of the Maurer's clefts and the parasitophorous vacuole and erythrocyte membranes. Spot fluorescence photobleaching was used to demonstrate the absence of a lipid continuum between the Maurer's clefts and parasite membranes and the host plasma membrane.

Comment in

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center