Format

Send to

Choose Destination
See comment in PubMed Commons below
Science. 2007 Dec 7;318(5856):1642-5.

Genetically determined differences in learning from errors.

Author information

1
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. tklein@cbs.mpg.de

Abstract

The role of dopamine in monitoring negative action outcomes and feedback-based learning was tested in a neuroimaging study in humans grouped according to the dopamine D2 receptor gene polymorphism DRD2-TAQ-IA. In a probabilistic learning task, A1-allele carriers with reduced dopamine D2 receptor densities learned to avoid actions with negative consequences less efficiently. Their posterior medial frontal cortex (pMFC), involved in feedback monitoring, responded less to negative feedback than others' did. Dynamically changing interactions between pMFC and hippocampus found to underlie feedback-based learning were reduced in A1-allele carriers. This demonstrates that learning from errors requires dopaminergic signaling. Dopamine D2 receptor reduction seems to decrease sensitivity to negative action consequences, which may explain an increased risk of developing addictive behaviors in A1-allele carriers.

PMID:
18063800
DOI:
10.1126/science.1145044
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center