Harnessing caustics for wave-front sensing

Opt Lett. 2001 Dec 1;26(23):1834-6. doi: 10.1364/ol.26.001834.

Abstract

Scintillation in measured wave fronts adds spurious dislocations and deformations to their reconstruction. The source of the problem is caustics formed by aberrations in intermediate planes. I propose to use intentional caustics to measure wave fronts under severe conditions such as low light level, fast scale variations, large aberrations, and discontinuities in the wave front. A simple realization is based on the Hartmann-Shack sensor, which samples the wave front with a lenslet array. Movement of the lenslets' foci is linear with slope changes. Here the lenslets are effectively formed in an acousto-optic device: Two standing waves are launched perpendicularly to the light beam and to each other. At some distance down the beam, each wave creates a comb of caustics, and the two orthogonal combs add up to an array of caustic spots. The spatial frequency of the array is linear with the temporal frequency of the standing sound waves. A simple Fourier demodulation scheme supplies the two wave-front gradients.