Format

Send to

Choose Destination
Toxicol Lett. 2008 Jan 4;176(1):40-7. Epub 2007 Oct 13.

Alteration of saliva and serum concentrations of manganese, copper, zinc, cadmium and lead among career welders.

Author information

1
Beijing Chaoyang Hospital, Capital University of Medical Sciences, Beijing 100020, PR China.

Abstract

Human saliva offers a unique noninvasive approach for populational study. Purposes of this study were to investigate the feasibility of using saliva manganese (Mn) concentration as a biomarker of Mn exposure among career welders and to study the variations of Mn, copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in saliva as affected by the welding profession. Forty-nine male welders, of whom 28 were in the low exposed group and 21 in the high exposed group, were recruited. Control subjects were 33 military soldiers without metal exposure. Ambient Mn levels in breathing zones were 0.01, 0.24 and 2.21mg/m(3) for control, low, and high exposed groups, respectively. Saliva samples were collected to quantify metals by inductive coupled plasma mass spectrometer (ICP-MS). Saliva concentrations of Mn and Cu were significantly higher in welders than in controls (p<0.01); the variation in saliva levels appeared likely to be associated with airborne Mn levels among study populations. Saliva levels of Zn were significantly lower in welders than in controls (p<0.05), while Cd and Pb levels in saliva were unchanged. Significant associations were observed between saliva and serum for Mn (r=0.575, p<0.05) and Cu (r=0.50, p<0.05). Moreover, saliva Mn concentrations were higher among welders with 5-10years of employment than those with less than 5years of employment. Linear regression analysis revealed a significant correlation between saliva Mn and Cu and between saliva Mn and Zn. Taken together, these data suggest that Mn concentrations in saliva appear reflective of welders' exposure to airborne Mn and their years of welding experience, respectively. Elevated Mn levels among welders may alter the homeostasis of Cu and Zn.

PMID:
18054180
PMCID:
PMC3980858
DOI:
10.1016/j.toxlet.2007.10.003
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center