Format

Send to

Choose Destination
Mol Plant Microbe Interact. 2008 Jan;21(1):79-86.

Distinct mechanisms govern the dosage-dependent and developmentally regulated resistance conferred by the maize Hm2 gene.

Author information

1
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.

Abstract

The maize Hm2 gene provides protection against the leaf spot and ear mold disease caused by Cochliobolus carbonum race 1 (CCR1). In this regard, it is similar to Hm1, the better-known disease resistance gene of the maize-CCR1 pathosystem. However, in contrast to Hm1, which provides completely dominant resistance at all stages of plant development, Hm2-conferred resistance is only partially dominant and becomes fully effective only at maturity. To investigate why Hm2 behaves in this manner, we cloned it on the basis of its homology to Hm1. As expected, Hm2 is a duplicate of Hm1, although the protein it encodes is grossly truncated compared with HM1. The efficacy of Hm2 in conferring resistance improves gradually over time, changing from having little or no impact in seedling tissues to providing complete immunity at anthesis. The developmentally specified phenotype of Hm2 is not dictated transcriptionally, because the expression level of the gene, whether occurring constitutively or undergoing substantial and transient induction in response to infection, does not change with plant age. In contrast, however, the Hm2 transcript is much more abundant in plants homozygous for this gene compared with plants that contain only one copy of the gene, suggesting a transcriptional basis for the dosage-dependent nature of Hm2. Thus, different mechanisms seem to underlie the developmentally programmed versus the partially dominant resistance phenotype of Hm2.

PMID:
18052885
DOI:
10.1094/MPMI-21-1-0079
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center