Send to

Choose Destination
Pediatr Res. 2007 Nov;62(5):604-9.

Transient inhibition of astrocytogenesis in developing mouse brain following postnatal caffeine exposure.

Author information

Inserm, U676, 75019 Paris, France.


Caffeine is frequently administered in human preterm newborns. Although some data suggest a potential risk for the developing brain, its impact has not been fully evaluated. We used a murine model of postnatal caffeine treatment in which mouse pups received intraperitoneal injections of caffeine from postnatal days 3 to 10. Caffeine exposure resulted in a transient reduction of glial fibrillary acidic protein and S100beta protein expression in various brain areas during the first 2 postnatal weeks (19.8% and 23.2% reduction in the hippocampus at P15, respectively). This effect was dose-dependent and at least partly involved a reduction of glial proliferation, as a caffeine-induced decrease of 5-bromodeoxyuridine incorporation was observed in the dentate gyrus and subventricular zone (25.8% and 26.6%, respectively) and no increase of programmed cell death (cleaved caspase-3 immunostaining) was observed at postnatal day 7. This effect could be reproduced with an antagonist of A(2a) adenosine receptor (A(2a)R) and was blocked by co-injection of an agonist. These results suggest that postnatal caffeine treatment might induce an alteration of astrocytogenesis via A(2a)R blockade during brain development. Although no obvious neuritic abnormalities (microtubule-associated protein 2 and synaptophysin immunostaining) were observed, postnatal caffeine treatment could have long-term consequences on brain function.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center