Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Med Chem. 2007;14(27):2848-64.

Role of the APP non-amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer's disease.

Author information

1
Laboratory for Neurochemistry, Department of Psychiatry-Neuroscience, and Genetics, Massachusetts General Hospital, Boston, MA, USA.

Abstract

Alzheimer's disease (AD) is the most prevalent form of dementia, and its effective disease modifying therapies are desperately needed. Promotion of non-amyloidogenic alpha-secretase cleavage of amyloid precursor protein (APP) to release soluble sAPPalpha, based on the most widely accepted "amyloid model" as a plausible mechanism for AD treatment, is the focus of this review. Modulation of alpha-secretase or "a disintegrin and metalloprotease (ADAM)"s activity via protein kinase C (PKC), calcium ion (Ca(2+)), tyrosine kinase (TK), MAP kinase (MAPK), and hormonal signaling, which regulate catabolic processing of APP, are discussed. The inhibition of amyloidogenic processing of APP by the beta- and gamma-secretase has been considered till now a promising strategy to treat AD. But beta- and gamma-secretase inhibitors, along with the available therapeutic tools for AD, have side effects. These challenges can be circumvented to certain extent; but activation of sAPPalpha release appears to be a potential alternative strategy to reduce cerebral amyloidosis. Drug screens have been performed to identify therapeutics for AD, but an effective screening strategy to isolate activators of alpha-secretase has been rarely reported. Novel reporter-based screens targeted toward APP mRNA 5' untranslated region (UTR), followed by counter-screens to detect alpha-secretase stimulators, could be important in detecting compounds to promote sAPPalpha release and reduce amyloid beta (Abeta) buildup. The primary inflammatory cytokine interleukin-1, which stimulates APP 5'UTR-directed translation of cell-associated APP, enhances processing to sAPPalpha in astrocytes and co-activates ADAM-10/ADAM-17 through MAPK signaling; thus illustrating a novel pathway that could serve as therapeutic model for AD.

PMID:
18045131
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Support Center