Format

Send to

Choose Destination
Environ Int. 2008 Apr;34(3):397-411. Epub 2007 Nov 26.

A spatial risk assessment methodology to support the remediation of contaminated land.

Author information

1
Consorzio Venezia Ricerche, Via della Libertà 5-12, I-30175 Marghera, Venice, Italy.

Abstract

When soil and groundwater contaminations occur over large areas, remediation measures should be spatially prioritized on the basis of the risk posed to human health and in compliance with technological and budget constraints. Within this scope, the application of human health risk assessment algorithms in a spatially resolved environment raises a number of methodological and technical complexities. In this paper, a methodology is proposed and applied in a case study to support the entire formulation process of remediation plans, encompassing hazard assessment, exposure assessment, risk characterisation, uncertainty assessment and allocation of risk reduction measures. In the hazard assessment, it supports the selection of Contaminants of Concern (CoC) with regard to both their average concentrations and peak concentrations, i.e. hot spots. In the exposure assessment, it provides a zoning of the site based on the geostatistical mapping of contaminant. In the risk characterisation, it generates vector maps of Risk Factors on the basis of the risk posed by multiple substances and allows the interrogation of most relevant CoC and exposure pathways for each zone of the site. It also supports the Monte Carlo based probabilistic estimation of the Risk Factors and generates maps of the associated uncertainty. In the risk reduction phase, it supports the formulation of remediation plans based on the stepwise spatial allocation of remediation interventions and the on-time simulation of risk reduction performances. The application of this methodology is fully supported by an easy-to-use and customized Geographical Information System and does not require high expertise for interpretation. The proposed methodology is the core module of a Decision Support System (DSS) that was implemented in the DESYRE software aimed at supporting the risk-based remediation of megasites.

PMID:
18031816
DOI:
10.1016/j.envint.2007.09.009
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center