Send to

Choose Destination
Ecology. 2007 Oct;88(10):2505-15.

Spatial scaling of avian population dynamics: population abundance, growth rate, and variability.

Author information

Department of Biology, Vassar College, Poughkeepsie, New York 12604, USA.


Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center