Format

Send to

Choose Destination
See comment in PubMed Commons below
Antonie Van Leeuwenhoek. 2008 May;93(4):437-42. Epub 2007 Nov 20.

Biochemical characterization and sequence analysis of a xylanase produced by an exo-symbiotic bacterium of Gryllotalpa orientalis, Cellulosimicrobium sp. HY-12.

Author information

1
Biological Resources Center, KRIBB, Daejeon, South Korea.

Abstract

An exo-symbiotic bacterium capable of hydrolyzing xylan was isolated from the gut of the mole cricket, Gryllotalpa orientalis, and identified as Cellulosimicrobium sp. HY-12. The xylanase (XylA( CspHY-12)) of this organism bound tightly to both DEAE and mono Q resins, and its molecular mass (M(r)) was about 39.0 kDa. The highest xylanase activity was observed at pH 6.0 and 60 degrees C. The enzyme was greatly suppressed by Ca(2+), Cu(2+), Co(2+), and Fe(2+) ions but not by Mg(2+) and Mn(2+). Although XylA( CspHY-12) was capable of hydrolyzing various types of xylosic compounds, it could not decompose carboxymethyl cellulose or xylobiose. The xylA (CspHY-12 ) gene consisted of an 1,188 bp open reading frame that encoded a polypeptide of 395 amino acids with a deduced molecular mass of 42,925 Da. The domain structure of XylA( CspHY-12) was most similar to those of the glycoside hydrolase (GH) family 10 endoxylanases. However its sequence identity with any of the enzymes in this family was below 52%. The results of this study suggest that the XylA( CspHY-12) is a new cellulase-free endo-beta-1,4-xylanase with some properties that are distinct from those of GH family 10.

PMID:
18027102
DOI:
10.1007/s10482-007-9210-2
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center