Format

Send to

Choose Destination
See comment in PubMed Commons below
J Dairy Sci. 2007 Dec;90(12):5405-14.

The analysis of milk components and pathogenic bacteria isolated from bovine raw milk in Korea.

Author information

1
Department of Microbiology, College of Veterinary Medicine and the BK21 Program for Veterinary Science, Seoul National University, Seoul, Republic of Korea.

Abstract

Bovine mastitis can be diagnosed by abnormalities in milk components and somatic cell count (SCC), as well as by clinical signs. We examined raw milk in Korea by analyzing SCC, milk urea nitrogen (MUN), and the percentages of milk components (milk fat, protein, and lactose). The associations between SCC or MUN and other milk components were investigated, as well as the relationships between the bacterial species isolated from milk. Somatic cell counts, MUN, and the percentages of milk fat, protein, and lactose were analyzed in 30,019 raw milk samples collected from 2003 to 2006. The regression coefficients of natural logarithmic-transformed SCC (SCCt) on milk fat (-0.0149), lactose (-0.8910), and MUN (-0.0096), and those of MUN on milk fat (-0.3125), protein (-0.8012), and SCCt (-0.0671) were negative, whereas the regression coefficient of SCCt on protein was positive (0.3023). When the data were categorized by the presence or absence of bacterial infection in raw milk, SCCt was negatively associated with milk fat (-0.0172), protein (-0.2693), and lactose (-0.4108). The SCCt values were significantly affected by bacterial species. In particular, 104 milk samples infected with Staphylococcus aureus had the highest SCCt (1.67) compared with milk containing other mastitis-causing bacteria: coagulase-negative staphylococci (n = 755, 1.50), coagulase-positive staphylococci (except Staphylococcus aureus; n = 77, 1.59), Streptococcus spp. (Streptococcus dysgalactiae, n = 37; Streptococcus uberis, n = 12, 0.83), Enterococcus spp. (n = 46, 1.04), Escherichia coli (n = 705, 1.56), Pseudomonas spp. (n = 456, 1.59), and yeast (n = 189, 1.52). These results show that high SCC and MUN negatively affect milk components and that a statistical approach associating SCC, MUN, and milk components by bacterial infection can explain the patterns among them. Bacterial species present in raw milk are an important influence on SCC in Korea.

PMID:
18024731
DOI:
10.3168/jds.2007-0282
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center