Format

Send to

Choose Destination
Chemosphere. 2008 Mar;71(1):97-106. Epub 2007 Nov 26.

Pesticides removal in the process of drinking water production.

Author information

1
Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain. mpormaad@unizar.es

Abstract

The aim of this research work was to study the effectiveness of the treatments commonly used in drinking water plants in Spain to degrade 44 pesticides systematically detected in the Ebro River Basin. The pesticides studied are: alachlor, aldrin, ametryn, atrazine, chlorfenvinfos, chlorpyrifos, pp'-DDD, op'-DDE, op'-DDT, pp'-DDT, desethylatrazine, 3,4-dichloroaniline, 4,4'-dichlorobenzophenone, dicofol, dieldrin, dimethoate, diuron, alpha-endosulphan, endosulphan-sulphate, endrin, alpha-HCH, beta-HCH, gamma-HCH, delta-HCH, heptachlor, heptachlor epoxide A, heptachlor epoxide B, hexachlorobenzene, isodrin, 4-isopropylaniline, isoproturon, metholachlor, methoxychlor, molinate, parathion methyl, parathion ethyl, prometon, prometryn, propazine, simazine, terbuthylazine, terbutryn, tetradifon and trifluralin. The techniques applied are: preoxidation by chlorine or ozone, chemical precipitation with aluminium sulphate and activated carbon adsorption. Oxidation by chlorine removes 60% of the studied pesticides, although combining this technique with a coagulation-flocculation-decantation process is more effective. The disadvantage of this treatment is the formation of trihalomethanes. Oxidation by ozone removes 70% of the studied pesticides. Although combination with a subsequent coagulation-flocculation-decantation process does not improve the efficiency of the process, combination with an activated-carbon absorption process gives rise to 90% removal of the studied pesticides. This technique was found to be the most efficient among the techniques studied for degrading the majority of the studied pesticides.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center