Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2007 Dec 12;129(49):15354-63. Epub 2007 Nov 17.

Resolution of chiral, tetrahedral M4L6 metal-ligand hosts.

Author information

1
Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.

Abstract

The supramolecular metal-ligand assemblies of M416 stoichiometry are chiral (M = GaIII, AlIII, InIII, FeIII, TiIV, or GeIV, H41 = N,N'-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene). The resolution process of delta delta delta delta- and lambda lambda lambda lambda-[M(4)1(6)]12- by the chiral cation S-nicotinium (S-nic+) is described for the Ga(III), Al(III), and Fe(III) assemblies, and the resolution is shown to be proton dependent. From a methanol solution of M(acac)3, H(4)1, S-nicI, and KOH, the delta delta delta delta-KH3(S-nic)7[(S-nic) subset M(4)1(6)] complexes precipitate, and the lambda lambda lambda lambda-K6(S-nic)5[(S-nic) subset M(4)1(6)] complexes subsequently can be isolated from the supernatant. Ion exchange enables the isolation of the (NEt4(+))(12), (NMe4(+))(12), and K+(12) salts of the resolved structures, which have been characterized by CD and NMR spectroscopies. Resolution can also be accomplished with 1 equiv of NEt4+ blocking the cavity interior, demonstrating that external binding sites are responsible for the difference in S-nic+ enantiomer interactions. Circular dichroism data demonstrate that the (NMe4(+))(12) and (NEt4(+))(12) salts of the resolved [Ga(4)1(6)]12- and [Al(4)1(6)]12- structures retain their chirality over extended periods of time (>20 d) at room temperature; heating the (NEt4(+))(12)[Ga(4)1(6)] assembly to 75 degrees C also had no effect on its CD spectrum. Finally, experiments with the resolved K(12)[Ga(4)1(6)] assemblies point to the role of a guest in stabilizing the resolved framework.

PMID:
18020339
DOI:
10.1021/ja0764815
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center