Send to

Choose Destination
Mol Cell Endocrinol. 2008 Jan 2;280(1-2):63-74. Epub 2007 Oct 6.

LIF removal increases CRABPI and CRABPII transcripts in embryonic stem cells cultured in retinol or 4-oxoretinol.

Author information

Department of Human Ecology, Division of Nutritional Sciences, The University of Texas at Austin, GEA 117, A2700 Austin, TX 78712, USA.


Murine embryonic stem (ES) cells cultured without leukemia inhibitory factor (LIF) or with retinoids differentiate and concomitantly metabolize retinol (vitamin A) to 4-oxoretinol. Our objective was to examine the effects of retinol or 4-oxoretinol on cellular retinoic acid binding protein (CRABP) I and II mRNA levels and retinol metabolism. ES cells were cultured with or without LIF, and with various doses of all-trans-retinol, all-trans-4-oxoretinol, or all-trans-retinoic acid (RA). In ES cells treated with retinol or 4-oxoretinol in the absence of LIF the CRABP-I (Crabp1, NM_013496; GI:7304974) and CRABP-II (Crabp2, NM_007759; GI:33469074) mRNA levels at 72h were 66+/-4 and 413+/-6 fold higher, respectively, than the levels in control ES cells cultured without retinoids and in the presence of LIF. The increase in CRABPI mRNA occurred through an increase in CRABPI gene transcription. CRABPI protein was also increased by >50-fold in cells treated with retinol in the absence of LIF. However [(3)H]4-oxoretinol does not bind to murine CRABPI or CRABPII. CYP26A1 mRNA levels and [(3)H]4-oxoretinol production from [(3)H]retinol increased in cells cultured without LIF and with exogenous retinoids. The enormous increases in CRABPI and II transcripts ( approximately 60 and 400-fold, respectively) in the absence of LIF may regulate aspects of the ES cell differentiation program in response to retinol.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center