Send to

Choose Destination
Cell Calcium. 2008 Jun;43(6):615-21. Epub 2007 Nov 14.

Redox properties of the calcium chelator Fura-2 in mimetic biomembranes.

Author information

CIQ-UP L4, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.


Fura-2 is one of the most commonly used fluorescent dyes to analyze the cytosolic Ca(2+) concentration ([Ca(2+)](i)) of living cells. Fura-2-dependent measurements of [Ca(2+)](i) are susceptible to changes of pH, reactive oxygen species concentration and membrane potential. Fura-2 is often loaded over the lipophilic cell membrane into the cytosol of a cell in its esterified form (Fura-2/AM) which is then cleaved by endogenous esterases. We have analyzed the electrochemical properties of Fura-2/AM and Fura-2 salt by cyclic voltammetry ("three-phase" and "thin-film" electrode methods). Using Fura-2/AM as a redox facilitator, we were able to mimic the transport of various ions across a lipophilic barrier. We show that Fura-2/AM in this biomimetic set-up can be reversibly oxidized in a single electrochemical step. Its redox reaction was highly proton sensitive in buffers with pH< or =6. At physiological pH of around 7.0, the oxidation of Fura-2/AM was coupled to an uptake of mono-anions across the liquid-liquid interface. The voltage-dependence of the redox cycle was sensitive to the free Ca(2+) concentration, either after de-esterification of Fura-2/AM, or when Fura-2 salt was used. The complex between Fura-2 and Ca(2+) ions is ionic (complexation occurs via the dissociated negative groups of Fura forms), while the redox transformations in Fura-2 occurs at the nitrogen atoms of the amino groups. Our results suggest that redox transformations of the Fura-2 forms do not affect the binding ability toward Ca(2+) ions and thus do not interfere with [Ca(2+)](i) measurements.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center