Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Pain. 2007 Nov 14;3:35.

Endothelin potentiates TRPV1 via ETA receptor-mediated activation of protein kinase C.

Author information

1
Institut für Pharmakologie und Toxikologie, FB-Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Str, 1, 35032 Marburg, Germany. plant@staff.uni-marburg.de

Abstract

BACKGROUND:

Endothelin-1 (ET-1) both stimulates nociceptors and sensitizes them to noxious stimuli, an effect probably mediated by the ETA receptor (ETAR) expressed in sensory neurons. The cellular mechanisms of this ET-1-mediated effect are only poorly understood. TRPV1, the heat-, pH- and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators released in response to noxious stimuli and during inflammation, is a potential target for the action of ET-1.

RESULTS:

We studied the effects of ET-1 on TRPV1 in sensory neurons from the dorsal root ganglion (DRG) and in HEK293 cells coexpressing TRPV1 and the ETAR. Specific 125I-ET-1 binding sites (817 +/- 92 fmol/mg) were detected in membrane preparations of DRG with an ETAR/ETBR ratio of 60:40. In an immunofluorescence analysis, coexpression of TRPV1 and the ETAR was found in a subpopulation of primary sensory neurons. ET-1 strongly potentiated capsaicin-induced TRPV1 currents in some neurons, and in HEK293 cells co-expressing TRPV1 and the ETAR. Weaker potentiation was observed in HEK293 cells coexpressing TRPV1 and the ETBR. ETAR activation also increased responses to low pH and heat. In HEK293 cells, strong potentiation of TRPV1 like that induced by ET-1 via the ETAR could be induced by PKC activation, but not with activators of the adenylyl cyclase or the PKA pathway. Furthermore, inhibition of PKC with bisindolylmaleimide X (BIM X) or mutation of the PKC phosphorylation site S800 completely prevented ETAR-mediated potentiation.

CONCLUSION:

We conclude that ET-1 potentiates TRPV1 by a PKC-dependent mechanism and that this could play a major role in the algogenic and hyperalgesic effects of ET-1 described in previous studies.

PMID:
18001466
PMCID:
PMC2206006
DOI:
10.1186/1744-8069-3-35
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center