Send to

Choose Destination
Matrix Biol. 2008 Mar;27(2):150-60. Epub 2007 Oct 10.

A novel peptide sequence in perlecan domain IV supports cell adhesion, spreading and FAK activation.

Author information

Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.


Perlecan/HSPG2 is a large, multi-domain, multifunctional heparan sulfate proteoglycan with a wide tissue distribution. With the exception of its unique domain I, each of perlecan's other four domains shares sequence similarity to other protein families including low density lipoprotein (LDL) receptor, laminin alpha chain, neural cell adhesion molecule (NCAM), immunoglobulin (Ig) superfamily members, and epidermal growth factor (EGF). Previous studies demonstrated that glycosaminoglycan-bearing perlecan domain I supports early chondrogenesis and growth factor delivery. Other sites in the core protein interact with other matrix molecules and support cell adhesion, although the peptide sequences involved remain unidentified. To identify novel functional motifs within perlecan, we used a bioinformatics approach to predict regions likely to be on the exterior of the folded protein. Unique hydrophilic sequences of about 18 amino acids were selected for testing in cell adhesion assays. A novel peptide sequence (TWSKVGGHLRPGIVQSG) from an immunoglobulin (Ig) repeat in domain IV supported rapid cell adhesion, spreading and focal adhesion kinase (FAK) activation when compared to other peptides, a randomly scrambled sequence of the domain IV peptide or a negative control protein. MG-63 human osteosarcoma cells, epithelial cells and multipotent C(3)H10T1/2 cells, but not bone marrow cells, rapidly, i.e., within 30 min, formed focal adhesions and assembled an actin cytoskeleton on domain IV peptide. Cell lines differentially adhered to the domain IV peptide, suggesting adhesion is receptor specific. Adhesion was divalent cation independent and heparin sensitive, a finding that may explain some previously poorly understood observations obtained with intact perlecan. Collectively, these studies demonstrate the feasibility of using bioinformatics-based strategies to identify novel functional motifs in matrix proteins such as perlecan.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center