Send to

Choose Destination
Curr Opin Allergy Clin Immunol. 2007 Dec;7(6):495-505.

Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans.

Author information

Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, Paris, France.



Herpes simplex encephalitis is a rare complication of herpes simplex virus 1 infection that strikes otherwise healthy individuals. Its pathogenesis has long remained elusive. We highlight the investigations dealing with the genetic basis of herpes simplex encephalitis in mice and humans.


Mouse models have revealed the impact of various host genes on protective immunity to herpes simplex encephalitis through strain-dependent variability (forward genetics) and via targeted knockouts (reverse genetics). These studies established in particular the crucial role of IFNalpha/beta in immunity to herpes simplex virus 1, paving the way towards the elucidation of the genetic cause of human herpes simplex encephalitis. Two children with rare, specific STAT1 or NEMO mutations displayed a broad impairment of IFNalpha/beta and IFNlambda-mediated immunity and predisposition to several infectious diseases including herpes simplex encephalitis. In contrast, children with UNC93B1 and TLR3 mutations displayed a selective impairment of dsRNA-induced IFNalpha/beta and IFNlambda production and predisposition to isolated herpes simplex encephalitis.


Herpes simplex encephalitis results from a series of monogenic primary immunodeficiencies that impair the TLR3 and UNC-93B-dependent production of IFNalpha/beta and IFNlambda in the central nervous system, at least in a fraction of children. This is not only crucial for the understanding of immunity to herpes simplex virus 1, but also for the diagnosis and treatment of herpes simplex encephalitis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center