Send to

Choose Destination
Planta. 2008 Mar;227(4):781-94. Epub 2007 Nov 7.

Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall.

Author information

The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3JH, UK.


We tested two hypotheses for the mechanism by which xyloglucan-pectin covalent bonds are formed in Arabidopsis cell cultures. Hypothesis 1 proposed hetero-transglycosylation, with xyloglucan as donor substrate and a rhamnogalacturonan-I (RG-I) side-chain as acceptor. We looked for enzyme activities that catalyse this reaction using alpha-(1-->5)-L-[(3)H]arabino- or beta-(1-->4)-D-[(3)H]galacto-oligosaccharides as model acceptor substrates. The (3)H-oligosaccharides were supplied (with or without added xyloglucans) to living Arabidopsis cell-cultures, permeabilised cells, cell-free extracts, or four authentic XTHs. No hetero-transglycosylation occurred. Therefore, we cannot support hypothesis 1. Hypothesis 2 proposed that some xyloglucan is manufactured de novo as a side-chain on RG-I. To test this, we pulse-labelled Arabidopsis cell-cultures with [(3)H]arabinose and monitored the radiolabelling of anionic (pectin-bonded) xyloglucan, which was resolved from free xyloglucan by ion-exchange chromatography. [(3)H]Xyloglucan-pectin complexes were detectable <4 min after [(3)H]arabinose feeding, which is shorter than the transit-time for polysaccharide secretion, indicating that xyloglucan-pectin bonds were formed intra-protoplasmically. Thereafter, the proportion of the wall-bound [(3)H]xyloglucan that was anionic remained almost constant at approximately 50% for > or =6 days, showing that the xyloglucan-pectin bond was stable in vivo. Some [(3)H]xyloglucan was rapidly sloughed into the medium instead of becoming wall-bound. Only approximately 30% of the sloughed [(3)H]xyloglucan was anionic, indicating that bonding to pectin promoted the integration of xyloglucan into the wall. We conclude that approximately 50% of xyloglucan in cultured Arabidopsis cells is synthesised on a pectic primer, then secreted into the apoplast, where the xyloglucan-pectin bonds are stable and the pectic moiety aids wall-assembly.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center