Send to

Choose Destination
See comment in PubMed Commons below
Protein Eng. 1991 Oct;4(7):719-37.

Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases.

Author information

Department of Biophysical Chemistry, NIZO, Ede, The Netherlands.


Subtilases are members of the family of subtilisin-like serine proteases. Presently, greater than 50 subtilases are known, greater than 40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase and proteinase K). The mature enzymes contain up to 1775 residues, with N-terminal catalytic domains ranging from 268 to 511 residues, and signal and/or activation-peptides ranging from 27 to 280 residues. Several members contain C-terminal extensions, relative to the subtilisins, which display additional properties such as sequence repeats, processing sites and membrane anchor segments. Multiple sequence alignment of the N-terminal catalytic domains allows the definition of two main classes of subtilases. A structurally conserved framework of 191 core residues has been defined from a comparison of the four known three-dimensional structures. Eighteen of these core residues are highly conserved, nine of which are glycines. While the alpha-helix and beta-sheet secondary structure elements show considerable sequence homology, this is less so for peptide loops that connect the core secondary structure elements. These loops can vary in length by greater than 150 residues. While the core three-dimensional structure is conserved, insertions and deletions are preferentially confined to surface loops. From the known three-dimensional structures various predictions are made for the other subtilases concerning essential conserved residues, allowable amino acid substitutions, disulphide bonds, Ca(2+)-binding sites, substrate-binding site residues, ionic and aromatic interactions, proteolytically susceptible surface loops, etc. These predictions form a basis for protein engineering of members of the subtilase family, for which no three-dimensional structure is known.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center