Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2007 Nov;210(Pt 22):3979-89.

An antidiuretic peptide (Tenmo-ADFb) with kinin-like diuretic activity on Malpighian tubules of the house cricket, Acheta domesticus (L.).

Author information

  • 1School of Biological and Chemical Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.


Acheta domesticus is reported to have an antidiuretic hormone that reduces Malpighian tubule secretion. Identified peptides known to work in this way (Tenmo-ADFa and ADFb, and Manse-CAP(2b)) were tested as candidates for the unidentified hormone, along with their second messenger, cyclic GMP. Only Tenmo-ADFb was active, but was diuretic, as was 8-bromo cyclic GMP. The activity of Tenmo-ADFb is comparable to that of the cricket kinin neuropeptide, Achdo-KII, but it is much less potent. Its activity was unaffected by deleting either the six N-terminal residues or the C-terminal phenylalanine. At high concentrations, tubule secretion is doubled by Tenmo-ADFb and Achdo-KII, but their actions are non-additive, suggesting they have a similar mode of action. Both stimulate a non-selective KCl and NaCl diuresis, which is consistent with the opening of a transepithelial Cl(-) conductance. In support of this, the diuretic response to Tenmo-ADFb and Achdo-KII is prevented by a ten-fold reduction in bathing fluid chloride concentration, and both peptides cause the lumen-positive transepithelial voltage to collapse. The Cl(-) conductance pathway appears likely to be transcellular, because the Cl(-) channel blocker DPC reduces both basal and peptide-stimulated rates of secretion. The effects of 8-bromo cyclic GMP on transepithelial voltage and composition of the secreted fluid are markedly different from those of Tenmo-ADFb. This is the first report of the antidiuretic factor Tenmo-ADFb stimulating tubule secretion. Although the actions of Tenmo-ADFb are indistinguishable from those of Achdo-KII, it is unlikely to act at a kinin receptor, because the core sequence (residues 7-12) lacks the Phe and Trp residues that are critical for kinin activity.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources


PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center