Send to

Choose Destination
Cell. 2007 Nov 2;131(3):596-610.

Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival.

Author information

Cellular Pathobiology Unit, Plasticity and Development Section, Cellular Neurobiology Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD 21224, USA.


Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center