Send to

Choose Destination
Bioresour Technol. 2008 Jul;99(11):5058-68. Epub 2007 Nov 5.

Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions.

Author information

Department of Biological and Irrigation Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA.


The goal of this study was to examine the effect of feeding strategy on the capability for treatment and the stability of an anaerobic sequencing batch reactor (ASBR) under increasing organic loading. The lab-scale ASBR systems were operated at 35 degrees C using synthetic organic wastewater under both batch and fed-batch operational modes with different feed to cycle time (F:C) ratios. Experimental studies were conducted over a wide range of volumetric organic loading rates (VOLRs) (1.524 g COD/l/d) by varying the hydraulic retention time (HRT) (1.25, 2.5, and 5d) and the feed wastewater's COD (3750-30,000 mg/l). With an F:C ratio greater than or equal to 0.42, the fed-batch mode operation showed higher system efficiency in COD removal, volumetric methane production rate (VMPR), and specific methane production rate (SMPR) as compared to those in the batch mode with identical VOLR and HRT. In the fed-batch mode, the COD removals reached 86-95% with VOLR up to 12 g COD/l/d. The maximums for VMPR of 3.17 l CH4/l/d and for SMPR of 1.63 g CH4-COD/g VSS/d were achieved with a VOLR of 12 g COD/l/d at HRTs of 2.5 and 1.25 d, respectively. The fed-batch operation presented a lower concentration of volatile fatty acids (VFAs) than those in the batch operation. A lower concentration of VFAs confirmed the stability and efficiency of the fed-batch mode operation. The specific methanogenic activity (SMA) analysis showed that the VFA-degrading activity of the biomass in the fed-batch mode was higher for acetate and butyrate, and lower for propionate. Determined biomass yield and bacterial decay coefficients in the fed-batch operational mode were 0.05 g VSS/g COD rem and 0.001 d(-1), respectively.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center