Send to

Choose Destination
Bioorg Med Chem Lett. 2007 Dec 15;17(24):6821-4. Epub 2007 Oct 17.

Novel substituted (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one and (Z)-(+/-)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ol derivatives as potent thermal sensitizing agents.

Author information

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.


Use of ionizing radiation is essential for the management of many human cancers, and therapeutic hyperthermia has been identified as a potent radiosensitizer. Radiation therapy combined with adjuvant hyperthermia represents a potential tool to provide outstanding local-regional control for refractory disease. (Z)-(+/-)-2-(N-Benzylindol-3-ylmethylene)quinuclidin-3-ol (2) and (Z)-(+/-)-2-(N-benzenesulfonylindol-3-ylmethylene)quinuclidin-3-ol (4) were initially identified as potent thermal sensitizers that could lower the threshold needed for thermal sensitivity to radiation treatment. To define the structural requirements of the molecule that are essential for thermal sensitization, we have synthesized and evaluated a series of (Z)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-one (9), and (Z)-(+/-)-2-(N-benzylindol-3-ylmethylene)quinuclidin-3-ol (10) analogs that incorporate a variety of substituents in both the indole and N-benzyl moieties. These systematic structure-activity relationship (SAR) studies were designed to further the development and optimization of potential clinically useful thermal sensitizing agents. The most potent analog was compound 10 (R(1)=H, R(2)=4-Cl), which potently inhibited (93% inhibition at 50 microM) the growth of HT-29 cells after a 41 degrees C/2h exposure.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center