Send to

Choose Destination
See comment in PubMed Commons below
Pain. 2008 Jul 15;137(2):352-65. Epub 2007 Oct 31.

Intrathecal neuropeptide Y reduces behavioral and molecular markers of inflammatory or neuropathic pain.

Author information

Department of Pharmacology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.


Our previous work indicates that the intrathecal administration of neuropeptide Y (NPY) acts at its cognate receptors to reduce behavioral signs of nociception in several models of inflammatory pain, including the formalin test. The present study extends these findings to a rat model of peripheral neuropathic pain, and then evaluates the hypothesis that NPY inhibits inflammation- and nerve injury-induced activation of spinal nociceptive transmission. Here we show that NPY dose-dependently reduced behavioral signs of mechanical and cold hypersensitivity in the spared nerve injury (SNI) model. Intrathecal administration of either a Y1 (BIBO3304) or a Y2 (BIIE0246) receptor antagonist dose-dependently reversed the anti-allodynic actions of NPY. To monitor the effects of NPY on the stimulus-induced activation of spinal nociresponsive neurons, we quantified protein expression of the immediate-early gene c-fos in lamina I-VI of the L4-L5 dorsal horn, with special attention to the mediolateral pattern of Fos immunohistochemical staining after SNI. Either tactile stimulation of the hindpaw ipsilateral to nerve injury, or intraplantar injection of noxious formalin, increased the number of Fos-like immunoreactive profiles. Tactile stimulation evoked a mediolateral pattern of Fos expression corresponding to the innervation territory of the uninjured (sural) nerve. We found that intrathecal NPY reduced both formalin- and SNI-induced Fos expression. NPY inhibition of SNI-induced Fos expression was localized to the sural (uninjured) innervation territory, and could be blocked by intrathecal BIBO3304 and BIIE0246. We conclude that NPY acts at spinal Y1 and Y2 receptors to reduce spinal neuron activity and behavioral signs of inflammatory or neuropathic pain.

[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins Icon for PubMed Central
    Loading ...
    Support Center