Send to

Choose Destination
Ecol Appl. 2007 Oct;17(7):1911-28.

Climatic/edaphic controls on soil carbon/nitrogen response to shrub encroachment in desert grassland.

Author information

Department of Global Ecology, Carnegie Institution, 260 Panama Street, Stanford, California 94305, USA.


The proliferation of woody plants in grasslands over the past 100+ years can alter carbon, nitrogen, and water cycles and influence land surface-atmosphere interactions. Although the majority of organic carbon in these ecosystems resides belowground, there is no consensus on how this change in land cover has affected soil organic carbon (SOC) and total nitrogen (TN) pools. The degree to which duration of woody plant occupation, climate, and edaphic conditions have mediated SOC and TN responses to changes in life-form composition are poorly understood. We addressed these issues at a desert grassland site in Arizona, USA, where the leguminous shrub velvet mesquite (Prosopis velutina) has proliferated along an elevation/precipitation/temperature gradient and on contrasting soil morphologic surfaces. On sandy loam complexes of mid-Holocene origin, mean SOC and TN of soils in the grassland matrix increased approximately 68% and approximately 45%, respectively, with increasing elevation. Soil organic carbon pools were comparable and TN pools were approximately 23% higher in Pleistocene-aged clay loam complexes co-occurring with Holocene-aged soils at the upper elevation/climatic zone. Across the site, belowground resources associated with large Prosopis plants were 21-154% (SOC) and 18-127% (TN) higher than those in the grassy matrix. The variance in SOC and TN pools accounted for by Prosopis stem size (a rough surrogate for time of site occupation) was highest at the low- and mid-elevation sites (69-74%) and lowest at the upper elevation site (32-38%). Soil delta15N values ranged from 5.5 per thousand to 6.7 per thousand across the soil/elevation zones but were comparable in herbaceous and shrub-impacted soils and exhibited a weak relationship with Prosopis basal stem diameter (r2 < 0.1) and TN (r2 < 0.08). The SOC delta13C values decreased linearly with increasing Prosopis basal diameter, suggesting that size and isotopic composition of the SOC pool is a function of time of Prosopis site occupation. Isotopic mixture models indicate that encroachment of C3 woody plants has also promoted SOC additions from C4 plant sources, indicative of long-term herbaceous facilitation. Grassy sites in contrasting soil/elevation combinations, initially highly distinctive in their SOC pool size and delta13C, appear to be converging on similar values following approximately 100 years of woody plant proliferation.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center