Format

Send to

Choose Destination
Eur J Pharmacol. 2008 Jan 14;578(2-3):359-64. Epub 2007 Oct 2.

Reduced blood glucose levels, increased insulin levels and improved glucose tolerance in alpha2A-adrenoceptor knockout mice.

Author information

1
Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Clinical Pharmacology, TYKSLAB, Hospital District of Southwest Finland, Itäinen Pitkäkatu 4B, FI-20520 Turku, Finland. eriika.savontaus@utu.fi

Abstract

Alpha(2)-Adrenoceptors regulate insulin secretion and sympathetic output. In the present study, alpha(2A)-adrenoceptor knockout (alpha(2A)-KO) mice and their C57BL/6J wild-type (WT) controls were used to assess the glucoregulatory role of the alpha(2A)-adrenoceptor subtype in vivo. Fasting and glucose-stimulated blood glucose and plasma insulin levels were determined with or without (+/-)-propranolol (5 mg/kg) or atropine (10 mg/kg) pre-treatment. Intraperitoneal glucose (1 g/kg) and insulin (0.5 and 1.0 IU/kg) tolerance tests were performed. Fasting plasma glucagon and corticosterone levels were measured. Blood glucose levels (mean+/-S.E.M.) were lower in alpha(2A)-KO males (7.2+/-0.6 mM) and females (7.2+/-0.2 mM) than in WT males (9.8+/-0.3 mM) and females (9.1+/-0.3 mM). Plasma insulin levels were higher in alpha(2A)-KO males (2.2+/-0.5 microg/l) and females (1.7+/-0.3 microg/l) than in WT males (0.7+/-0.1 microg/l) and females (0.8+/-0.2 microg/l). These differences remained after pharmacological beta-adrenoceptor and muscarinic acetylcholine receptor inhibition. In spite of a tendency for slightly decreased insulin sensitivity in alpha(2A)-KO mice, glucose tolerance in alpha(2A)-KO mice was significantly better than in WT mice. However, glucose-stimulated insulin secretion was not increased in alpha(2A)-KO mice compared to WT controls. Plasma glucagon levels, but not corticosterone levels, were elevated in alpha(2A)-KO mice. These results suggest that lack of inhibitory pancreatic beta-cell alpha(2A)-adrenoceptor function results in hyperinsulinaemia, reduced blood glucose levels and improved glucose tolerance in alpha(2A)-KO mice, and demonstrate a key role for the alpha(2A)-adrenoceptor in adrenergic regulation of blood glucose and insulin homeostasis.

PMID:
17964569
DOI:
10.1016/j.ejphar.2007.09.015
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center