Format

Send to

Choose Destination
See comment in PubMed Commons below
Anal Biochem. 2008 Jan 15;372(2):189-97. Epub 2007 Sep 14.

High-throughput cellular assays for regulated posttranslational modifications.

Author information

1
Invitrogen Discovery Sciences, Madison, WI 53717, USA.

Abstract

We have developed a set of high-throughput screening (HTS)-compatible assays capable of measuring regulated, target-specific posttranslational modifications in a mammalian cell-based format. We chose the NFkappaB signal transduction cascade as a model system to validate this approach because specific target proteins in this signaling pathway undergo a multitude of posttranslational modifications in response to pathway stimulation. In this pathway, TNFalpha induces the phosphorylation, ubiquitination, and proteasomal degradation of IkappaBalpha, which leads to the release and translocation of the NFkappaB transcriptional complex into the nucleus. To measure these cellular processes, we describe the use of a stable cell line expressing a fusion of green fluorescent protein (GFP) with IkappaBalpha that can be interrogated for either ubiquitination or phosphorylation using a unique set of terbium-labeled antibodies in a time-resolved Förster resonance energy transfer (TR-FRET)-based readout. Concurrently, we have engineered a beta-lactamase-IkappaBalpha reporter cell line that can be used to quantify proteasomal degradation of IkappaBalpha in living cells. Both TR-FRET and beta-lactamase reporter technologies provide a convenient, sensitive, and robust means to interrogate the chronological steps in NFkappaB signaling in a physiologically relevant cellular context without the need to overexpress any enzyme involved in this pathway. Cellular HTS assays that interrogate such processes will provide a unique integrated approach to dissecting intermediate steps in NFkappaB activation and could serve as examples of broadly applicable pathway analysis tools for target-based drug discovery.

PMID:
17961489
DOI:
10.1016/j.ab.2007.09.012
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center