Format

Send to

Choose Destination
Metabolism. 2007 Nov;56(11):1527-33.

Changes in plasma lipids and increased low-density lipoprotein susceptibility to oxidation in pregnancies complicated by gestational diabetes: consequences of obesity.

Author information

1
School of Medicine, Universidad San Pablo-CEU, 28922 Madrid, Spain.

Abstract

Dyslipidemia is associated with increased low-density lipoprotein (LDL) susceptibility to oxidation, a phenomenon associated with endothelial dysfunction, atherosclerosis, cell toxicity, and intrauterine growth retardation. The present study was designed to determine if women developing gestational diabetes mellitus (GDM) have both increased plasma lipids and LDL susceptibility to oxidation throughout pregnancy. We also wanted to study the effects of obesity upon these parameters. A nested case-control study was carried out in 45 women with uncomplicated pregnancies and 62 women diagnosed with GDM following the criteria of the American Diabetes Association. In all women, blood was drawn at 15, 24, and 32 weeks of gestation. Low-density lipoprotein oxidation was initiated by the addition of CuCl2, and formation of conjugated dienes was monitored. Glucose, cholesterol, triglycerides, vitamin E, estradiol, and progesterone were determined. In GDM, elevated levels of glucose, cholesterol, and triglycerides were observed when compared with the control group even in the first trimester, before the detection of diabetes. In the control group, the lag phase in the LDL oxidation was 85.3, 84.4, and 95.6 minutes at 15, 24, and 32 weeks of pregnancy, compared with 63.3, 63.4, and 74.5 minutes in the GDM group (P < .001 in the 3 periods). These differences remained when adjusted for the body mass index. In a multiple linear regression analysis, a negative correlation was observed between the lag phase and the body mass index (P < .001) and cholesterol (P < .001), whereas a positive one appeared with vitamin E (P < .05) and time of gestation (P < .001). In pregnancy, GDM increases LDL susceptibility to oxidation. Obesity and hypercholesterolemia further exacerbate this effect.

PMID:
17950104
DOI:
10.1016/j.metabol.2007.06.020
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center