Format

Send to

Choose Destination
J Phys Chem A. 2007 Nov 15;111(45):11683-700. Epub 2007 Oct 19.

An evaluation of harmonic vibrational frequency scale factors.

Author information

1
School of Chemistry and Centre of Excellence in Free Radical Chemistry and Biotechnology, University of Sydney, Sydney, New South Wales 2006, Australia.

Abstract

Scale factors for obtaining fundamental vibrational frequencies, low-frequency vibrational frequencies, zero-point vibrational energies (ZPVEs), and thermal contributions to enthalpy and entropy have been derived through a least-squares approach from harmonic frequencies determined at more than 100 levels of theory. Wave function procedures (HF, MP2, QCISD, QCISD(T), CCSD, and CCSD(T)) and a large and representative range of density functional theory (DFT) approaches (B3-LYP, BMK, EDF2, M05-2X, MPWB1K, O3-LYP, PBE, TPSS, etc.) have been examined in conjunction with basis sets such as 6-31G(d), 6-31+G(d,p), 6-31G(2df,p), 6-311+G(d,p), and 6-311+G(2df,p). The vibrational frequency scale factors were determined by a comparison of theoretical harmonic frequencies with the corresponding experimental fundamentals utilizing a standard set of 1066 individual vibrations. ZPVE scale factors were generally obtained from a comparison of the computed ZPVEs with experimental ZPVEs for a smaller standard set of 39 molecules, though the effect of expansion to a 48 molecule data set was also examined. In addition to evaluating the scale factors for a wide range of levels of theory, we have also probed the effect on scale factors of varying the percentage of incorporated exact exchange in hybrid DFT calculations using a modified B3-LYP functional. This has revealed a near-linear relationship between the magnitude of the scale factor and the proportion of exact exchange. Finally, we have investigated the effect of basis set size on HF, MP2, B3-LYP, and BMK scale factors by deriving values with basis sets ranging from 6-31G(d) up to 6-311++G(3df,3pd) as well as with basis sets in the cc-pVnZ and aug-cc-pVnZ series and with the TZV2P basis.

PMID:
17948971
DOI:
10.1021/jp073974n

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center