Send to

Choose Destination

Fabrication and performance of a 40-MHz linear array based on a 1-3 composite with geometric elevation focusing.

Author information

Sunnybrook Health Sciences Centre, Toronto, ON, Canada.


The fabrication and performance of a 256-element high-frequency (40-MHz) linear array is described. The array was fabricated using a high-frequency 1-3 PZT-polymer composite material developed in our laboratory. The spacing of the pillars in the composite was chosen to match the 40-microm center-to-center element spacing of the array electrodes. The element electrodes were created using photolithography, and connections to the electrodes were made using ultrasonic wire bonding. The array was focused in the elevation direction by geometrically shaping the composite material using a cylindrical die with a 6-mm radius of curvature. The resulting transducer produced pulses with a -6 dB two-way bandwidth of 50% and a peak-to-peak pressure of 503 kPa when excited with a +/-30 V monocycle pulse. The measured one-way (-6 dB) directivity for a single array element was 24 degrees and the -3 dB one-way elevation beamwidth was measured to be 130 microm. The radiation pattern for a focused 64-element subaperture was measured by mechanically translating the aperture above a needle hydrophone. A -3 dB one-way beamwidth of 97 microm was found at a depth of 6 mm. The one-way radiation pattern decreased smoothly to less than -30 dB at a lateral distance of 640 microm.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center