Format

Send to

Choose Destination
Cell Biol Int. 2008 Jan;32(1):136-45. Epub 2007 Sep 7.

Effect of magnesium on calcium-induced depolarisation of mitochondrial transmembrane potential.

Author information

1
Institute of Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic. racay@jfmed.uniba.sk

Abstract

An effect of magnesium on calcium-induced depolarisation of mitochondrial transmembrane potential (DeltaPsi(m)) was investigated. Depending on the presence of Mg(2+), addition of Ca(2+) to suspension of isolated rat heart mitochondria induced either reversible depolarisation or irreversible collapse of succinate-driven DeltaPsi(m). Irreversible collapse of DeltaPsi(m), observed in the absence of Mg(2+), was insensitive to Ca(2+) chelation, inhibition of Ca(2+) uptake and increased efflux of Ca(2+) from mitochondrial matrix. Based on these data, opening of mPTP in a high-conductance mode is considered to be a major cause of the Ca(2+)-induced irreversible collapse of DeltaPsi(m) in the absence of Mg(2+). Involvement of mPTP in the process of Ca(2+)-induced collapse of DeltaPsi(m) was further supported by protective effect of both CsA and ADP. Reversible collapse of DeltaPsi(m), observed in the presence of Mg(2+), was sensitive to EGTA, ADP; and inhibition of Ca(2+) uptake and increased efflux of Ca(2+) from mitochondrial matrix. This may represent selective induction of a low-conductance permeability pathway. Presented results indicate important role of Mg(2+) in the process of Ca(2+)-induced depolarisation of DeltaPsi(m) mainly through discrimination between low- and high-conductance modes of mPTP. Minor effect of Mg(2+) on Ca(2+)-induced depolarisation of DeltaPsi(m) was observed at the level of stimulation of DeltaPsi(m) generation and inhibition of mitochondrial Ca(2+) uptake.

PMID:
17933560
DOI:
10.1016/j.cellbi.2007.08.024
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center