Send to

Choose Destination
Proteins. 2008 Apr;71(1):261-77.

QMEAN: A comprehensive scoring function for model quality assessment.

Author information

Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany.


In protein structure prediction, a considerable number of alternative models are usually produced from which subsequently the final model has to be selected. Thus, a scoring function for the identification of the best model within an ensemble of alternative models is a key component of most protein structure prediction pipelines. QMEAN, which stands for Qualitative Model Energy ANalysis, is a composite scoring function describing the major geometrical aspects of protein structures. Five different structural descriptors are used. The local geometry is analyzed by a new kind of torsion angle potential over three consecutive amino acids. A secondary structure-specific distance-dependent pairwise residue-level potential is used to assess long-range interactions. A solvation potential describes the burial status of the residues. Two simple terms describing the agreement of predicted and calculated secondary structure and solvent accessibility, respectively, are also included. A variety of different implementations are investigated and several approaches to combine and optimize them are discussed. QMEAN was tested on several standard decoy sets including a molecular dynamics simulation decoy set as well as on a comprehensive data set of totally 22,420 models from server predictions for the 95 targets of CASP7. In a comparison to five well-established model quality assessment programs, QMEAN shows a statistically significant improvement over nearly all quality measures describing the ability of the scoring function to identify the native structure and to discriminate good from bad models. The three-residue torsion angle potential turned out to be very effective in recognizing the native fold.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center