Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight

Phys Rev Lett. 2007 Oct 5;99(14):148101. doi: 10.1103/PhysRevLett.99.148101. Epub 2007 Oct 1.

Abstract

Dragonflies are four-winged insects that have the ability to control aerodynamic performance by modulating the phase lag (phi) between forewings and hindwings. We film the wing motion of a tethered dragonfly and compute the aerodynamic force and power as a function of the phase. We find that the out-of-phase motion as seen in steady hovering uses nearly minimal power to generate the required force to balance the weight, and the in-phase motion seen in takeoffs provides an additional force to accelerate. We explain the main hydrodynamic interaction that causes this phase dependence.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Flight, Animal / physiology*
  • Insecta / physiology
  • Models, Biological*
  • Wings, Animal / physiology*