Send to

Choose Destination
Curr Opin Chem Biol. 2007 Oct;11(5):569-77.

Argonautes confront new small RNAs.

Author information

W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.


Argonaute is at the heart of all effector complexes in RNA interference. In the classical RNAi pathway Argonaute functions as the Slicer enzyme that cleaves an mRNA target directed by a complementary siRNA. Two recently described Argonaute protein subfamilies mediate distinct functions in RNAi. The Piwi subfamily functions in the germline through a novel class of small RNAs that are longer than Argonaute-specific siRNAs and miRNAs. Piwi-interacting RNAs (piRNAs) carry a 2'-O-methylation on their 3' end and appear to be synthesized by a Piwi Slicer dependent mechanism. Piwi/piRNA complexes in mammals and flies are directly linked to the control of transposable elements during germline development. Amplified RNAi in C. elegans is mediated by secondary siRNAs selectively bound to secondary Argonautes (SAGOs) that belong to a worm-specific Argonaute subfamily (WAGO). Secondary siRNAs are 5' triphosphorylated that may allow specific loading into SAGO complexes that are rate limiting for RNAi in C. elegans. Interestingly, SAGOs lack conserved Slicer amino acid residues and probably act in a Slicer-independent fashion.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center