Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Proteomics. 2007 Dec;6(12):2180-99. Epub 2007 Oct 5.

Proteomics analysis of cytokine-induced dysfunction and death in insulin-producing INS-1E cells: new insights into the pathways involved.

Author information

1
Laboratory for Experimental Medicine and Endocrinology, University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, box 902, B-3000 Leuven, Belgium.

Abstract

Cytokines released by islet-infiltrating immune cells play a crucial role in beta-cell dysfunction and apoptotic cell death in the pathogenesis of type 1 diabetes and after islet transplantation. RNA studies revealed complex pathways of genes being activated or suppressed during this beta-cell attack. The aim of the present study was to analyze protein changes in insulin-producing INS-1E cells exposed to inflammatory cytokines in vitro using two-dimensional DIGE. Within two different pH ranges we observed 2214 +/- 164 (pH 4-7) and 1641 +/- 73 (pH 6-9) spots. Analysis at three different time points (1, 4, and 24 h of cytokine exposure) revealed that the major changes were taking place only after 24 h. At this time point 158 proteins were altered in expression (4.1%, n = 4, p < or = 0.01) by a combination of interleukin-1beta and interferon-gamma, whereas only 42 and 23 proteins were altered by either of the cytokines alone, giving rise to 199 distinct differentially expressed spots. Identification of 141 of these by MALDI-TOF/TOF revealed proteins playing a role in insulin secretion, cytoskeleton organization, and protein and RNA metabolism as well as proteins associated with endoplasmic reticulum and oxidative stress/defense. We investigated the interactions of these proteins and discovered a significant interaction network (p < 1.27e-05) containing 42 of the identified proteins. This network analysis suggests that proteins of different pathways act coordinately in a beta-cell dysfunction/apoptotic beta-cell death interactome. In addition the data suggest a central role for chaperones and proteins playing a role in RNA metabolism. As many of these identified proteins are regulated at the protein level or undergo post-translational modifications, a proteomics approach, as performed in this study, is required to provide adequate insight into the mechanisms leading to beta-cell dysfunction and apoptosis. The present findings may open new avenues for the understanding and prevention of beta-cell loss in type 1 diabetes.

PMID:
17921177
DOI:
10.1074/mcp.M700085-MCP200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center