Format

Send to

Choose Destination
Med Image Anal. 2008 Apr;12(2):99-119. Epub 2007 Aug 25.

Colon polyp detection using smoothed shape operators: preliminary results.

Author information

1
Department of Radiology, Stanford University, Stanford, CA 94305, United States. padma@stanford.edu

Abstract

Computer-aided detection (CAD) algorithms identify locations in computed tomographic (CT) images of the colon that are most likely to contain polyps. Existing CAD methods treat the CT data as a voxelized, volume image. They estimate a curvature-based feature at the mucosal surface voxels. However, curvature is a smooth notion, while our data are discrete and noisy. As a second order differential quantity, curvature amplifies noise. In this paper, we present the smoothed shape operators method (SSO), which uses a geometry processing approach. We extract a triangle mesh representation of the colon surface, and estimate curvature on this surface using the shape operator. We then smooth the shape operators on the surface iteratively. Throughout, we use techniques explicitly designed for discrete geometry. All our computation occurs on the surface, rather than in the voxel grid. We evaluate our algorithm on patient data and provide free-response receiver-operating characteristic performance analysis over all size ranges of polyps. We also provide confidence intervals for our performance estimates. We compare our performance with the surface normal overlap (SNO) method for the same data. A preliminary evaluation of our method on 35 patients yielded the following results (polyp diameter range; sensitivity; false positives/case): (10mm; 100%; 17.5), (5-10 mm; 89.7%, 21.23), (<5 mm; 59.1%; 23.9) and (overall; 80.3%; 23.9). The evaluation of the SNO method yielded: (10 mm; 75%; 17.5), (5-10 mm; 43.1%; 21.23), (<5 mm; 15.9%; 23.9) and (overall; 38.5%; 23.9).

PMID:
17910934
DOI:
10.1016/j.media.2007.08.001
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center