Send to

Choose Destination
See comment in PubMed Commons below
Diabetes. 2008 Jan;57(1):86-94. Epub 2007 Oct 1.

In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice.

Author information

  • 1Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, Portland, Oregon, USA.



Melanocyte-stimulating hormone (MSH) peptides processed from proopiomelanocortin (POMC) regulate energy homeostasis by activating neuronal melanocortin receptor (MC-R) signaling. Agouti-related peptide (AgRP) is a naturally occurring MC-R antagonist but also displays inverse agonism at constitutively active melanocortin-4 receptor (MC4-R) expressed on transfected cells. We investigated whether AgRP functions similarly in vivo using mouse models that lack all neuronal MSH, thereby precluding competitive antagonism of MC-R by AgRP.


Feeding and metabolic effects of the MC-R agonist melanotan II (MTII), AgRP, and ghrelin were investigated after intracerebroventricular injection in neural-specific POMC-deficient (Pomc(-/-)Tg/+) and global POMC-deficient (Pomc(-/-)) mice. Gene expression was quantified by RT-PCR.


Hyperphagic POMC-deficient mice were more sensitive than wild-type mice to the anorectic effects of MTII. Hypothalamic melanocortin-3 (MC3)/4-R mRNAs in POMC-deficient mice were unchanged, suggesting increased receptor sensitivity as a possible mechanism for the heightened anorexia. AgRP reversed MTII-induced anorexia in both mutant strains, demonstrating its ability to antagonize MSH agonists at central MC3/4-R, but did not produce an acute orexigenic response by itself. The action of ghrelin was attenuated in Pomc(-/-)Tg/+ mice, suggesting decreased sensitivity to additional orexigenic signals. However, AgRP induced delayed and long-lasting modifications of energy balance in Pomc(-/-)Tg/+, but not glucocorticoid-deficient Pomc(-/-) mice, by decreasing oxygen consumption, increasing the respiratory exchange ratio, and increasing food intake.


These data demonstrate that AgRP can modulate energy balance via a mechanism independent of MSH and MC3/4-R competitive antagonism, consistent with either inverse agonist activity at MC-R or interaction with a distinct receptor.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center