Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2007 Oct 1;67(19):8994-9000.

MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas.

Author information

Center for Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.


Despite the development of new glioma therapies that allow for tumor-targeted in situ delivery of cytotoxic drugs, tumor resistance to apoptosis remains a key impediment to effective treatment. Mounting evidence indicates that microRNAs (miRNA) might play a fundamental role in tumorigenesis, controlling cell proliferation and apoptosis. In gliomas, microRNA-21 (miR-21) levels have been reported to be elevated and their knockdown is associated with increased apoptotic activity. We hypothesized that suppression of miR-21 might sensitize gliomas for cytotoxic tumor therapy. With the use of locked nucleic acid (LNA)-antimiR-21 oligonucleotides, bimodal imaging vectors, and neural precursor cells (NPC) expressing a secretable variant of the cytotoxic agent tumor necrosis factor-related apoptosis inducing ligand (S-TRAIL), we show that the combined suppression of miR-21 and NPC-S-TRAIL leads to a synergistic increase in caspase activity and significantly decreased cell viability in human glioma cells in vitro. This phenomenon persists in vivo, as we observed complete eradication of LNA-antimiR-21-treated gliomas subjected to the presence of NPC-S-TRAIL in the murine brain. Our results reveal the efficacy of miR-21 antagonism in murine glioma models and implicate miR-21 as a target for therapeutic intervention. Furthermore, our findings provide the basis for developing combination therapies using miRNA modulation and cytotoxic tumor therapies.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center