Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2007 Oct 1;67(19):8994-9000.

MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas.

Author information

1
Center for Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.

Abstract

Despite the development of new glioma therapies that allow for tumor-targeted in situ delivery of cytotoxic drugs, tumor resistance to apoptosis remains a key impediment to effective treatment. Mounting evidence indicates that microRNAs (miRNA) might play a fundamental role in tumorigenesis, controlling cell proliferation and apoptosis. In gliomas, microRNA-21 (miR-21) levels have been reported to be elevated and their knockdown is associated with increased apoptotic activity. We hypothesized that suppression of miR-21 might sensitize gliomas for cytotoxic tumor therapy. With the use of locked nucleic acid (LNA)-antimiR-21 oligonucleotides, bimodal imaging vectors, and neural precursor cells (NPC) expressing a secretable variant of the cytotoxic agent tumor necrosis factor-related apoptosis inducing ligand (S-TRAIL), we show that the combined suppression of miR-21 and NPC-S-TRAIL leads to a synergistic increase in caspase activity and significantly decreased cell viability in human glioma cells in vitro. This phenomenon persists in vivo, as we observed complete eradication of LNA-antimiR-21-treated gliomas subjected to the presence of NPC-S-TRAIL in the murine brain. Our results reveal the efficacy of miR-21 antagonism in murine glioma models and implicate miR-21 as a target for therapeutic intervention. Furthermore, our findings provide the basis for developing combination therapies using miRNA modulation and cytotoxic tumor therapies.

PMID:
17908999
DOI:
10.1158/0008-5472.CAN-07-1045
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center