Format

Send to

Choose Destination
J Biol Chem. 2007 Nov 30;282(48):35386-95. Epub 2007 Oct 1.

Dimerization of Hsp90 is required for in vivo function. Design and analysis of monomers and dimers.

Author information

1
Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

Abstract

Heat shock protein 90 (Hsp90) plays a central role in signal transduction and has emerged as a promising target for anti-cancer therapeutics, but its molecular mechanism is poorly understood. At physiological concentration, Hsp90 predominantly forms dimers, but the function of full-length monomers in cells is not clear. Hsp90 contains three domains: the N-terminal and middle domains contribute directly to ATP binding and hydrolysis and the C domain mediates dimerization. To study the function of Hsp90 monomers, we used a single-chain strategy that duplicated the C-terminal dimerization domain. This novel monomerization strategy had the dual effect of stabilizing the C domain to denaturation and hindering intermolecular association of the ATPase domain. The resulting construct was predominantly monomeric at physiological concentration and did not function to support yeast viability as the sole Hsp90. The monomeric construct was also defective at ATP hydrolysis and the activation of a kinase and steroid receptor substrate in yeast cells. The ability to support yeast growth was rescued by the addition of a coiled-coil dimerization domain, indicating that the parental single-chain construct is functionally defective because it is monomeric.

PMID:
17908693
DOI:
10.1074/jbc.M703844200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center